_Matematik Forum Sitesi_ |By Ali Ekber|
Web sitemize hoş geldiniz. Umarız iyi vakit geçirirsiniz. Sitemiz bir "Matematik Forum Sitesi" dir. Eğer sitemizde misafir olarak gezmek istiyorsanız bu iletiyi kapatın (Misafirler de üyeler kadar yetki sahibidir. Fakat sadece link ve resimleri göremezler. Bundan sorumlu biz değiliz.) Eğer üye olarak giriş yapmak istiyorsanız fakat üye olmak istemiyorsanız lütfen "Giriş Yap" butonuna tıklayıp şu bilgileri giriniz :

Kullanıcı adı : Misafir
Şifre : matematik

İyi forumlar.

Mutlak Değer

Önceki başlık Sonraki başlık Aşağa gitmek

Mutlak Değer

Mesaj  Ali Ekber Bir C.tesi Ara. 26, 2009 1:09 pm

PDF OLARAK İZLEMEK İÇİN TIKLA



MUTLAK DEĞER ÖZELLİKLLERİ
VE
İŞLEVLERİ

Tanım:Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile gösterilir.
x , R nin elemanıdır ve
x ={x, x > 0 ise
{-x,x < 0 ise
şeklinde tanımlanır.
f(x) ={f(x),f(x) > 0 ise
{-f(x),f(x)< 0 ise
1) Örnek: x =-3 için x-5 - x+2 ifadesinin eşiti kaçtır?

Çözüm: -3-5 - -3+2 = 8-1=7
2) Örnek: a<b<0 olduğuna göre,
a+b - a-b ifadesinin eşiti nedir?

Çözüm: a+b - a-b = -(a+b)- -(a-b)
=-a-b+a-b
=-2b

ÖZELLİKLERİ

V a,b elemandır R için
1) a > 0 dır
2) a = -a
3) - a < a < a
4) a.b = a . b
5) b= 0 için a/b = a / b
6) a+b < a + b (üçgen eşitsizliği)
7) n elemanıdır Z* olmak üzere a^ = a ^
Cool a > 0,x elemanıdır R ve x < a ise -a <x <a
9) a > 0,x elemanıdır R, x > a ise x > a veya x < -a dır.

10) IaI-IbI < Ia+bI
11)I-aI=IaI, Ia-bI=Ib-aI
12)IaI . IaI = a . a
13)I f(x) I = a ise f(x )= a veya f(x) = -a
14)I f(x) I < a ise -a< f(x) < a
15)I f(x) I > a ise f(x) > a U -f(x) > a

İSPATLAR
Öz.1)a = 0 ise IaI = I0I = 0
a > 0 ise IaI = a >0
a < 0 ise IaI = -a >0 dır.
O halde IaI > 0 dır.
Öz.2)a ve -a sayılarının 0 dan uzaklıkları eşit olduğundan IaI=I-aI dır.
Öz.6)V a elemanıdır R için -IaI < a < IaI
V b elemanıdır R için -IbI < b< IbI
+
-IaI-IbI< a+b<IaI+IbI
O halde Ia+bI < IaI+IbI dir.
Öz.7)V a,b elemanıdır R için Ia.bI=IaI.IbI idi.
Ia^I=Ia.a.a...aI=IaI.IaI.IaI...IaI=IaI^ dir.
(n tane) ( n tane )
Öz.3)a sayısı için a<0,a=0,a>0 durumlarından biri vardır.
a)a < 0 ise IaI = -a dır.
IaI > 0 olduğundan -IaI < 0 dır.
-IaI= a <0 < IaI ise -IaI < a < IaI dır.
b)a=0 ise IaI = I0I = 0 ve -Ia I= 0 olacağından –IaI < a < IaI dır.
c)a > 0 ise IaI = a ve -IaI < 0 dır.
-IaI< 0 < IaI = a ise -IaI < a < IaI dır.

MUTLAK DEĞERLİ DENKLEMLER
Soru: I3x-7I = 5 denklemini çözünüz.
Çözüm:I3x-7I = 5 ise; 3x-7 = 5 veya 3x-7 = -5 olur.
1- 3x-7 = 5 2- 3x-7=-5
3x = 12 3x = 2
x = 4 x = 2/3
Ç={4,2/3}

Soru:Ix-7I = 7-x eşitliğini sağlayan kaç tane doğal sayı vardır?
Çözüm: Ix-7I = 7-x ise
x-7 < 0 ise x < 7olup x doğal sayıları 0,1,2,3,4,5,6,7 dir.
O halde 8 tane doğal sayı vardır.

Soru: 5-2x = 2 denkleminin çözüm kümesi nedir ?
3

Çözüm: 5-2x = 2
3


5-2x/3=2 veya 5-2x/3= -2
5-2x = 6 veya 5-2x = -6
x = -1/2 veya x = 11/2
Ç ={-1/2,11/2}
Soru:I 4+I2x-3I I = 5 denklemini sağlayan x reel sayılarının toplamı nedir?
Çözüm: I 4+I2x-3I I = 5


4+I2x-3I = 5 veya 4+I2x-3I = -5
I2x-3I = 1 veya I2x-3I = -9
2x-3 = 1 veya 2x-3 = -1 Çözüm:O
x = 2 x = 1

O halde x+x = 2+1 = 3 olur.
Uyarı:
Hiçbir reel sayının mutlak değeri negatif olamayacağından, denklemin çözüm kümesi boş küme (O) olur.
BİRİNCİ DERECEDEN MUTLAK DEĞERLİ
EŞİTSİZLİKLER

Soru: Ix-7I < 3 eşitsizliğinin çözüm kümesini bulunuz.

Çözüm: Ix-7I < 3 = -3 < x-7 < 3 = -3+7 < x < 3+7
=4<x<10 Ç={5,6,7,8,9}
Soru: 2x-3 < 2 eşitsizliğini sağlayan tamsayıları bulunuz.
2

Çözüm: 2x-3 < 2 = -2 <2x-3 < 2
2 2

= -4 < 2x-3 < 4
= -4+3 < 2x < 4+3
= -1< 2x < 7
= -1/2 < x < 7/2
Ç={0,1,2,3}
Soru:I 3x+2 I+9 > 2 eşitsizliğini çözünüz.
Çözüm:I 3x+2I+9 > 2 = I 3x+2I > -7
***Bu eşitsizlik x in her değeri için sağlanır.Bu nedenle; Çözüm kümesi R dir.

Soru: I Ix-5I-2 I < 3 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:I Ix-5I-2 I < 3 = -3 < Ix-5I -2 < 3
= -1 < Ix-5I < 5
Ix-5I >-1 eşitsizliği daima doğrudur.
Ix-5I < 5 = -5 < x-5 < 5
= 0 < x < 10
Bu aradaki tamsayılar 1,2,3,4,5,6,7,8,9 olup 9 tamsayı vardır.
İKİNCİ DERECEDEN MUTLAK DEĞERLİ
EŞİTSİZLİKLER

Soru: I 2x-7 I < 2 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:I 2x-7 I < 2 = -2 < 2x-7 < 2
= -2+7 < 2x < 2+7
= 5 < 2x < 9
= 5/2 < x < 9/2
Bu durumda çözüm kümesi {3,4} olur.
Soru: I 3x+1 I > -8 denkleminin çözüm kümesini bulunuz.
Çözüm:V x elemanıdır R için I 3x+1 I > 0 olduğundan
I 3x+1 I > -8 eşitsizliği daima doğrudur. Buna göre denklemin çözüm kümesi Reel sayılar kümesidir.

Soru: I 3-3x I < 9 eşitsizliğinin R deki çözüm kümesi nedir?

a) 0<x<2 b) -2<x<4 c) -1<x<0 d) 0<x<2 e) 2<x<4
Çözüm: I 3-3x I<9 = -9 < 3-3x < 9
= -9+3 < 3x < 9+3
= -6 < 3x < 12
= -6/3 < x < 12/3
= -2 < x < 4 ( Cevap B dir.)
Soru: 1 < Ix-2I < 3 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm: 1 < Ix-2I < 3 = 1 < x-2 < 3
= 1+2 < x < 3+2
= 3 < x < 5
Eşitsizliği oluşturan tamsayılar = {3,4,5} tir.

MUTLAK DEĞER İLE İLGİLİ KARIŞIK
ALIŞTIRMALAR

Soru 1: I 3x-1 I+5 = 0 denkleminin çözüm kümesi nedir?
Çözüm: I 3x-1 I+5 = 0 ise I 3x-1 I = -5 olur.
*** V a elemanıdır R için IaI > 0 dır.
Bu nedenle sorunun çözüm kümesi O dir.
Soru 2: I Ix-4I -5 I = 10 denklemini sağlayan x değerlerini bulunuz.
Çözüm: I Ix-4I –5 I = 10

Ix-4I-5 =10 veya Ix-4I-5 = -10
Ix-4I = 5 veya Ix-4I = -5
Ç = {O}
x-4 = 15 veya x-4 = -15 x = 19 veya x = -14
Soru 3: I Ix-1I+5 I = 8 denkleminin kökleri toplamı kaçtır?
a) -2 b) 0 c) 2 d) 4 e)14

Çözüm: I Ix-1I+5 I = 8

I Ix-1I+5 I = 8 veya I Ix-1I+5 = -8
Ix-1I = 3 veya Ix-1I = -13
Ç = {O}
x-1 = 3 veya x-1 = -3
x = 4 veya x = -2
x+x = 4+(-2) = 2 ( Cevap C dir.)
Soru 4: I Ix-2I-3 I = 7 denkleminin kökleri toplamı kaçtır?
a) 2 b) 4 c) 8 d) 10 e) 12
Çözüm: I Ix-2I-3 I = 7

Ix-2I-3 = 7 veya Ix-2I-3 = -7
Ix-2I = 10 veya Ix-2I = -4
Ç = {O}
x-2 = 10 veya x-2 = -10
x = 12 veya x = -8
x+x = 12-(-Cool = 4 ( Cevap B dir.)
Soru 5: I 7-(3-I-5I) I işleminin sonucu nedir?
a) 4 b) 5 c) 6 d) 7 e) 9
Çözüm:
I 7-(3-I-5I) I = I 7-[3- -(-5)] I
= I 7-[3-5] I
= I 7-(-2) I
= I 7+2 I
= I 9 I = 9
Soru 6: I Ix-2I-5 I = 1 denklemini sağlayan x tam sayıları nelerdir?
a) 3,6,-3,-6 b) 4,8,-3,-8 c) 7,9,5 d) 8,-4,6,-2 e) 2,-2
Çözüm: I Ix-2I-5 I


Ix-2I-5 = 1 veya Ix-2I-5 = -1
Ix-2I = 6 veya Ix-2I = 4
x-2 = 6 veya x-2 = -6 x-2 = 4 veya x-2 = -4
x = 8 x = -4 x = 6 x = -2
Soru 7: Ix+2I < 4 eşitsizliğini sağlayan kaç tane tamsayı vardır?
a) 13 b) 9 c) 8 d) 7 e) 6 (ÖSS 1999)
Çözüm:
Ix+2I < 4 = -4 < x + 2 <4
= -6 < x < 2
Eşitsizliği oluşturan tamsayılar –6,-5,-4,-3,-2,-1,0,1,2 dir. ( Cevap A dır.)
Soru 8: IxI < 6 olduğuna göre,x-2y+2 = 0 koşulunu sağlayan kaç tane y tamsayısı vardır?
a) 7 b) 6 c) 5 d) 4 e) 3 (ÖSS 2000)
Çözüm:
IxI 0 dan küçük olmayacağından IxI 0,1,2,3,4,5,6 olabilir.
x-2y+2 = 0 koşulunu çift sayılar oluşturur.Bunlar 0,2,4,6 dır.Bu sayılar y yi tamsayı yapar. ( Cevap D dir.)
Soru 9:
f(x) = 12 fonksiyonunun en büyük değeri
Ix-1I+Ix+3I
nedir?
a) 2 b) 3 c) 4 d) 5 e) 6
Çözüm:
x elemanıdır [-3,1] için f(x) en büyük olur. X = -3 ise,

f(-3) = 12 = 12/4 =3 tür.
I-3-1I+I-3+3I
( Cevap B dir.)

Ali Ekber
Admin

Mesaj Sayısı : 108
Kayıt tarihi : 23/12/09
Yaş : 20

Kullanıcı profilini gör

Sayfa başına dön Aşağa gitmek

Önceki başlık Sonraki başlık Sayfa başına dön


 
Bu forumun müsaadesi var:
Bu forumdaki mesajlara cevap veremezsiniz