_Matematik Forum Sitesi_ |By Ali Ekber|
Web sitemize hoş geldiniz. Umarız iyi vakit geçirirsiniz. Sitemiz bir "Matematik Forum Sitesi" dir. Eğer sitemizde misafir olarak gezmek istiyorsanız bu iletiyi kapatın (Misafirler de üyeler kadar yetki sahibidir. Fakat sadece link ve resimleri göremezler. Bundan sorumlu biz değiliz.) Eğer üye olarak giriş yapmak istiyorsanız fakat üye olmak istemiyorsanız lütfen "Giriş Yap" butonuna tıklayıp şu bilgileri giriniz :

Kullanıcı adı : Misafir
Şifre : matematik

İyi forumlar.

Çarpanlara Ayırma -Wikipedia.Com'a Teşekkürler-[Alıntıdır]

Önceki başlık Sonraki başlık Aşağa gitmek

Çarpanlara Ayırma -Wikipedia.Com'a Teşekkürler-[Alıntıdır]

Mesaj  Ali Ekber Bir Paz Ara. 27, 2009 2:38 pm

ÇARPANLARA AYIRMA

A. ORTAK ÇARPAN PARANTEZİNE ALMA

En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.

B. ÖZDEŞLİKLER

1. İki Kare Farkı - Toplamı

1) a2 – b2 = (a – b)(a + b)

2) a2 + b2 = (a + b)2 – 2ab

3) a2 + b2 = (a – b)2 + 2ab




2. İki Küp Farkı - Toplamı

1) a3 – b3 = (a – b)(a2 + ab + b2 )

2) a3 + b3 = (a + b)(a2 – ab + b2 )

3) a3 – b3 = (a – b)3 + 3ab(a – b)

4) a3 + b3 = (a + b)3 – 3ab(a + b)




3. n. Dereceden Farkı - Toplamı

1) n bir sayma sayısı olmak üzere,

xn – yn = (x – y)(xn – 1 + xn – 2y + xn – 3 y2 + ... + xyn – 2 + yn – 1) dir.




2) n bir tek sayma sayısı olmak üzere,

xn + yn = (x + y)(xn – 1 – xn – 2y + xn – 3y2 – ... – xyn – 2 + yn – 1) dir.




4. Tam Kare İfadeler

1) (a + b)2 = a2 + 2ab + b2

2) (a – b)2 = a2 – 2ab + b2

3) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)

4) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc) n bir tam sayı ve a ¹ b olmak üzere,

• (a – b)2n = (b – a)2n

• (a – b)2n – 1 = –(b – a)2n – 1 dir.




• (a + b)2 = (a – b)2 + 4ab








5. (a ± b)n nin Açılımı

Pascal Üçgeni


(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.

Sonra n nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.

(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur. • (a + b)3 = a3 + 3a2b + 3ab2 + b3

• (a – b)3 = a3 – 3a2b + 3ab2 – b3

• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4

• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4




• a4 + a2 + 1 = (a2 + a + 1)(a2 – a + 1)

• a4 + 4 = (a2 + 2a + 2)(a2 – 2a + 2)

• a4 + 4b4 = (a2 + 2ab + 2b2)(a2 – 2ab + 2b2)




• a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)





C. ax2 + bx + c BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI

ax2 + bx + c ifadesini çarpanlarına ayırırken birkaç yöntem kullanılır. Biz burada ikisini vereceğiz. En iyi öğrendiğiniz yöntemi daima kullanarak pratiklik sağlayınız.




1. YÖNTEM

1.1. a = 1 için,

b = m + n ve c = m × n olmak üzere,




1.2. a ¹ 1 İken

m × n = a, mp + qn = b ve c = q × p ise




ax2 + bx + c = (mx + q) × (nx + p) dir.




2. YÖNTEM

Çarpımı a × c yi,

toplamı b yi veren iki sayı bulunur.

Bulunan sayılar p ve r olsun.

Bu durumda,daki ifade gruplandırılarak çarpanlarına ayrılır.


--------------------------------------------------------------------------------

A. ORTAK ÇARPAN PARANTEZİNE ALMA A(x) . B(x) ± A(x) . C(x) = A(x) . [B(x) ± C(x)]

En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.,

B. ÖZDEŞLİKLER

1. İki Kare Farkı - Toplamı

a2 – b2 = (a – b) (a + b) a2 + b2 = (a + b)2 – 2ab ya da a2 + b2 = (a – b)2 + 2ab dir.

2. İki Küp Farkı - Toplamı

a3 – b3 = (a – b) (a2 + ab + b2 ) a3 + b3 = (a + b) (a2 – ab + b2 ) a3 – b3 = (a – b)3 + 3ab (a – b) a3 + b3 = (a + b)3 – 3ab (a + b) 3. n. Dereceden Farkı - Toplamı

i) n bir sayma sayısı olmak üzere,

xn – yn = (x – y) (xn – 1 + xn – 2 y + xn – 3 y2 + ... + xyn – 2 + yn – 1) dir.

ii) n bir tek sayma sayısı olmak üzere,

xn + yn = (x + y) (xn – 1 – xn – 2y + xn – 3 y2 – ... –

xyn – 2 + yn – 1) dir.

4. Tam Kare İfadeler

(a + b)2 = a2 + 2ab + b2 (a – b)2 = a2 – 2ab + b2 (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc) n bir tam sayı olmak üzere,

(a – b)2n = (b – a)2n
(a – b)2n – 1 = – (b – a)2n – 1 dir.,
(a + b)2 = (a – b)2 + 4ab
5. (a ± b)n nin Açılımı




Pascal Üçgeni

(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.

Sonra n nin Paskal üçgenindeki karşılığı bulunarak katsayılar belirlenir.

(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.

(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a – b)3 = a3 – 3a2b + 3ab2 – b3
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
C. ax2 + bx + c

BİÇİMİNDEKİ ÜÇ TERİMLİNİN

ÇARPANLARA AYRILMASI

1. a = 1 için,

b = m + n ve c = m . n olmak üzere,

x2 + bx + c = (x + m) (x + n) dir.













ALINTIDIR

Ali Ekber
Admin

Mesaj Sayısı : 108
Kayıt tarihi : 23/12/09
Yaş : 20

Kullanıcı profilini gör

Sayfa başına dön Aşağa gitmek

Önceki başlık Sonraki başlık Sayfa başına dön


 
Bu forumun müsaadesi var:
Bu forumdaki mesajlara cevap veremezsiniz